S1 Text. List of Symbols and Glossary

Diacritical marks (~) and (^) The signs (~) and (^) refer, respectively, to the 'Self-Correcting' and 'Poisson with Feedback' models

KGH Acronym for Kenema Governmental Hospital, in Sierra Leone

LASV Lassa fever virus

LF Lassa fever

Stuttering chain/ Stuttering transmission Transmission occurring when human-to-human infections become possible but lead only to self-limiting chains of transmission

Zoonotic spillover/Zoonotic transmission Transmission of pathogens from animals to humans. They are assumed to arise from random and independent contacts with the reservoir.

Infection-response efficiency χ_H The product of the probability of the virus is excreted from humans and the probability that humans acquire infection when challenged with the virus

Infection-response efficiency χ_R The product of the probability that the virus is excreted from the reservoir and the probability that humans acquire infection when challenged with the virus

Human population size N_H The total number of people in the suitable system of area A, e.g. a village

Rodent abundance N_R The population of rodents in the considered system of area A, e.g. a village

Force of infection from animal source $\Lambda_R = N_R Pr_R(N_R) \chi_R \eta_R$ Rate at which susceptible individuals get infected from a animal source.

Force of infection from human source $\Lambda_H = N_H Pr_H(N_H) \chi_H \eta_H$ Rate at which susceptible individuals get infected from a human source.

Zoonotic exposure $\zeta = Pr_R(N_R)\chi_R\eta_R$ Rate at which one susceptible individual get infected after being exposed to the infected reservoir.

Effective human exposure $\kappa = \chi_H \eta_H$ Exposure to other humans rescaled by the infection-response efficiency η_H .

Rate λ , $\tilde{\lambda}_j$, $\hat{\lambda}_j$ Expected number of zoonotic spillovers per time unit for the different models. Index j implies that the rate is time-dependent.

 $C_H(t_j)$ cumulative number of people who had been infected at any past time during the interval $[0, t_i]$, irrespective of if they recovered or died

 $C_H^{zoon}(t_j)$ cumulative number of people who had been infected from animals at any past time during the interval $[0, t_j]$, irrespective of if they recovered or died

 $C_H^{h-h}(t_j)$ cumulative number of people who had been infected from humans at any past time during the interval $[0, t_j]$, irrespective of if they recovered or died

 $D_H(t_i)$ number of dead in the human population at time t_i .

 $\eta_R(N_R)$ A measure of exposure, given by the product $\eta_R(N_R) = \xi(N_R)\mathcal{A}$ where \mathcal{A} is the area of the considered system, e.g. a village, and $\xi(N_R)$ is the probability of a contact (direct or mediated) between a single member of the human population and the population of N_R rodents, per time unit and area unit

 $\eta_H(N_H)$ the probability that a single person is in contact with any other member of the human population, per time unit

 γ_r recovery rate

 γ_d disease induced mortality rate

 $I_H(t_j)$ number of infected in the human population at time t_j .

 μ mean associated with the Negative-Binomial distribution (Eq (S3))

 μ_{λ} mean of the associated Gamma-distribution for the rate λ (Eq (S2) in S3 Text, table S1 in S3 text)

 μ_X mean of the random variable X

 N_H human population size.

P(k), $\tilde{P}(k,t_j)$, $\hat{P}(k,t_j)$ Probability of observing k infections (or admissions to KGH) at any time t_j during the interval $[(j-1)\tau, j\tau]$ for the different models. For the 'Simple Poisson' model this probability does not depend on the time t_j

 $P_{N_H}(N_H)$, $P_{N_R}(N_R)$, $P_{\chi_R}(\chi_R)$ $P_{N_H}(N_H)$ and $P_{N_R}(N_R)$ are the probability density functions of observing N_R rodents and N_H human in the system. $P_{\chi_R}(\chi_R)$ is the probability density function of the infection-response efficiency χ_R

 $P_{\lambda}(\lambda; r, \theta), r, \theta, \Gamma(r), p P_{\lambda}(\lambda; r, \theta)$ is the distribution of the (stochastic) rate λ in Cox model. r, θ and p are the parameters describing a Gamma and a Negative-Binomial distributions. $\Gamma(r)$ is the Gamma function (see Eq. (S3))

 $Pr_R(N_R)$ infection prevalence in rodents

 $Pr_H(N_H)$ infection prevalence in humans

Q proportion of LF cases who contracted the disease from a human source (Eq (13))

 $R_H(t_j)$ number of recovered in the human population at time t_j .

 $S_H(t_i)$ number of susceptibles in the human population at time t_i .

 σ_{λ}^2 variance associated with the Negative-Binomial distribution (Eq (S3))

 σ^2 variance associated with the Gamma-distribution for the rate λ (Eq (S2) in S3 Text, table S1 in S3 text)

 σ_X^2 variance of the random variable X

 t_j discrete time defined by the interval $[(j-1)\tau, j\tau]$ (with $t_j \in [(j-1)\tau, j\tau]$).

au time unit